
Penetration Test Report

The Guardian Project

V 1.0
Diemen, April 30th, 2021
Confidential

Document Properties

Client The Guardian Project

Title Penetration Test Report

Targets Smack-omemo/src/main
Smack-omemo-signal/src/main

Version 1.0

Pentesters Stefan Marsiske, Daan Spitz

Authors Stefan Marsiske, Marcus Bointon, Patricia Piolon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 August 29th, 2018 Stefan Marsiske Initial draft

0.2 September 10th, 2018 Marcus Bointon Review

1.0 April 30th, 2021 Patricia Piolon Review

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 7

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Pentest Technical Summary 10
3.1 Findings 10

3.1.1 GSO-001 — Inactive Devices Compromise Forward Secrecy 10

3.1.2 GSO-002 — Invalid BareJid validation leads to unauthorized file access 11

3.1.3 GSO-003 — Read-Only Devices Compromise Forward Secrecy 13

3.1.4 GSO-004 — Signed Pre-Keys Should Be Updated When Used 14

3.1.5 GSO-005 — Unsafe parameters passed to file operation methods 15

3.1.6 GSO-006 — Exhaustion of Pre-Keys Using MAM Messages. 16

3.2 Non-Findings 17

3.2.1 NF-001 — Search the code for dangerous java methods 17

3.2.2 NF-002 — Investigate serialization functionality of the CachedDeviceList class 18

3.2.3 NF-003 — Investigate potential xml attacks against used parsers 18

4 Future Work 20

5 Conclusion 21

Appendix 1 Testing team 22

1 Executive Summary

1.1 Introduction

Between August 5, 2018 and August 29, 2018, Radically Open Security B.V. carried out a code audit for The Guardian

Project

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the code audit was limited to the following targets:

• Smack-omemo/src/main

• Smack-omemo-signal/src/main

tagged in git with v4.3

1.3 Project objectives

The goal of the audit was to verify the correctness of the Omemo implementation and to check for any traditional

vulnerabilities in the code.

1.4 Timeline

The Security Audit took place between August 5, 2018 and August 29, 2018.

1.5 Results In A Nutshell

Three cases of compromise of forward security and one denial of service using resource exhaustion of prekeys has been

found. The compromise of forward security is an especially serious matter as it reduces the security guarantees of the

protocol significantly.

Furthermore, an issue was discovered in the validation of user-supplied usernames, possibly leading to unsafe file

operations performed by the default file-backed omemo store. This could possibly lead to system compromise via

arbitrary file reading and writing, depending on how the library is used in an application.

4 Radically Open Security B.V.

Confidential

1.6 Summary of Findings

ID Type Description Threat level

GSO-001 Loss of Forward
Secrecy

Inactive devices which no longer come online retain
old chaining keys, which, if compromised, break
confidentiality of all messages from that key onwards.

High

GSO-002 Unsafe Parameter
Handling

Inappropriate validation of user-supplied username and
password inputs in the smack-omemo component may
pass through characters that are unsafe to use in file
operations performed by the default file-backed omemo
store.

Elevated

GSO-003 Loss of Forward
Secrecy

Read-only devices never update their keys and thus
forfeit forward security.

Elevated

GSO-004 Loss of Forward
Secrecy

Signed prekeys are not refreshed when used in a session
initiation, allowing an active attacker to compromise the
forward secrecy of a PreKeySignalMessage.

Elevated

GSO-005 Unsafe Parameter
Handling

In the FileBasedOmemoStore, the arguments passed
to the methods responsible for creating files/directories
and reading/writing data to them are not sufficiently
checked for malicious characters, leading to possible path
traversal attacks.

Moderate

GSO-006 Resource Exhaustion An attacker can exhaust all pre-keys using MAM stored
messages, and prevent legitimate users from initiating a
session with the peer.

Low

Executive Summary 5

1.6.1 Findings by Threat Level

16.7%

16.7%

50.0%

16.7%

High (1)

Elevated (3)

Moderate (1)

Low (1)

1.6.2 Findings by Type

16.7%

33.3%

50.0%

Loss of forward secrecy (3)

Unsafe parameter handling (2)

Resource exhaustion (1)

6 Radically Open Security B.V.

Confidential

1.7 Summary of Recommendations

ID Type Recommendation

GSO-001 Loss of Forward
Secrecy

Deactivate inactive devices after a certain amount of time. Allow inactive
devices to reactivate only after a keyTransportElement ensures fresh
keys.

GSO-002 Unsafe Parameter
Handling

The functions used for reading and writing data to the omemo store should
strip any special characters from parameters used for creating the target path
inside the methods themselves. This way no assumptions are made about
the safety of the parameters and incorrect implementations or future changes
cannot introduce similar security issues. if (slashIndex > 0) { inside
the parseDomain method should be changed to if (slashIndex >=
0) so that the first character cannot be a /.

GSO-003 Loss of Forward
Secrecy

Read-only devices should send regular keyTransportElement messages.

GSO-004 Loss of Forward
Secrecy

Rotate all used pre-keys upon usage.

GSO-005 Unsafe Parameter
Handling

The functions used for reading and writing data to the omemo store should
strip any special characters from parameters used for creating the target path
inside the methods themselves. This way, no assumptions are made about
the safety of the parameters and incorrect implementations or future changes
cannot introduce similar security issues.

GSO-006 Resource Exhaustion Retain all prekeys until all MAM messages are processed, and initiate a fresh
session with the peer to avoid prekey reuse.

Executive Summary 7

2 Methodology

2.1 Planning

Our general approach during this code audit was as follows:

1. Code reading

The code has been inspected with rigorous attention to the implementation of the Omemo protocol, with special

regard to our previous review of the Omemo protocol and its implementation in the 3rd party Conversations

application.

2. Code searching

The code was scanned for problematic use of classes and methods that are known to be potential causes of

security issues. This includes methods that perform system commands, file or network operations, deserialization,

class loading, sql queries and html outputting. Any such functionality was manually reviewed for problematic

usage.

2.2 Risk Classification

Throughout the document, vulnerabilities or risks are labeled and categorized as:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

8 Radically Open Security B.V.

Confidential

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES). For more

information, see: http://www.pentest-standard.org/index.php/Reporting.

Methodology 9

3 Pentest Technical Summary

3.1 Findings

We have identified the following issues:

3.1.1 GSO-001 — Inactive Devices Compromise Forward Secrecy

Vulnerability ID: GSO-001

Vulnerability type: Loss of Forward Secrecy

Threat level: High

Description:

Inactive devices which no longer come online retain old chaining keys, which, if compromised, break confidentiality of all

messages from that key onwards.

Technical description:

Inactive devices that are no longer used and no longer come online should be pruned from the conversation. They keep

a copy of an old chain key in their memory, which compromises the forward secrecy of the entire conversation.

Stale (inactive) devices are taken care of by "stale device" handling, however processSendingMessage() only

disables our own devices, not the devices of others.

Impact:

Forward secrecy is forfeited. All messages derived from the old key can be decrypted if an inactive (and presumably old)

device key is compromised.

Recommendation:

Deactivate inactive devices after a certain amount of time. Allow inactive devices to reactivate only after a

keyTransportElement ensures fresh keys.

10 Radically Open Security B.V.

Confidential

3.1.2 GSO-002 — Invalid BareJid validation leads to unauthorized file access

Vulnerability ID: GSO-002

Vulnerability type: Unsafe Parameter Handling

Threat level: Elevated

Description:

Inappropriate validation of user-supplied username and password inputs in the smack-omemo component may pass

through characters that are unsafe to use in file operations performed by the default file-backed omemo store.

Technical description:

The following snippet smack-omemo/src/main/java/org/jivesoftware/smackx/omemo/

OmemoManager.java:180 contains code that is exploitable:

public static synchronized OmemoManager getInstanceFor(XMPPConnection connection) {
 BareJid user;
 if (connection.getUser() != null) {
 user = connection.getUser().asBareJid();
 } else {
 // This might be dangerous
 try {
 user = JidCreate.bareFrom(((AbstractXMPPConnection)
 connection).getConfiguration().getUsername());
 } catch (XmppStringprepException e) {
 throw new AssertionError("Username is not a valid Jid. " +
 "Use OmemoManager.gerInstanceFor(Connection, deviceId) instead.");
 }
 }

If the XMPPConnection object is not yet authenticated and therefore does not contain a username, the username will

be taken from the configuration. The line creating the jid object using JidCreate.bareFrom passes the username

from the connection configuration. This can be any CharSequence coming from the outside client code utilizing the

library (set by calling ConnectionConfiguration.setUsernameAndPassword).

Following the logic in the bareFrom method in the jxmpp module to the parseLocalpart method, we can see that

if the username contains a / character before a @ character, the jid will be seen as having only a domain part and will be

instantiated as a DomainPartJid object.

The code that parses this domain part contains the actual bug:

public static String parseDomain(String jid) {
 if (jid == null) return null;

 int atIndex = jid.indexOf('@');
 int slashIndex = jid.indexOf('/');
 if (slashIndex > 0) {

Pentest Technical Summary 11

 // 'local@domain.foo/resource' and 'local@domain.foo/res@otherres' case
 if (slashIndex > atIndex) {
 return jid.substring(atIndex + 1, slashIndex);
 // 'domain.foo/res@otherres' case
 } else {
 return jid.substring(0, slashIndex);
 }
 } else {
 return jid.substring(atIndex + 1);
 }
}

The slashIndex > 0 check is supposed to check if there are any slashes in the username, but it skips the first

character at index 0, which can therefore still contain a / character undetected. The code in the else branch then

returns the part after the first @ character. This means that if the first two characters are /@, any following characters will

be returned and accepted into the domain part of the DomainpartJid.

So if the username is /@../../../../../../../etc/passwd, ../../../../../../../etc/passwd will be

stored as the jid. This jid is later used unchanged as part of the path for retrieving the right defaultDeviceId from the

file-backed omemo store.

To demonstrate files being written outside of the omemo store root, the following PoC code was created and tested:

OmemoConfiguration.setFileBasedOmemoStoreDefaultPath(new File("/tmp/store"));
Builder<?, ?> builder = DummyConnectionNotAuthed.getDummyConfigurationBuilder();
builder.setUsernameAndPassword("/@../../../../../../../../../../../../tmp/h4x", "");
DummyConnectionNotAuthed connection = new DummyConnectionNotAuthed(builder.build());

OmemoManager a = OmemoManager.getInstanceFor(connection);

After running this PoC as a unit test, the following files can be observed outside of the omemo store root (/tmp/store):

[user@pentest]$ ls -l /tmp/h4x
total 4
-rw-rw-r-- 1 user user 4 Aug 9 07:49 defaultDeviceId

The following screenshots show a debugging session annotating the local variables that are being passed forward to the

file operation methods:

12 Radically Open Security B.V.

Confidential

Impact:

This bug could lead to different attack vectors depending on how exactly the library is integrated into an application. In

any case, the result is that arbitrary folders can be created outside of the omemo store root, and files can be written to

those directories. Further potential attacks could be implemented against the system combining other load and store

operations.

Recommendation:

The functions used for reading and writing data to the omemo store should strip any special characters from parameters

used for creating the target path inside the methods themselves. This way no assumptions are made about the safety of

the parameters and incorrect implementations or future changes cannot introduce similar security issues.

if (slashIndex > 0) { inside the parseDomain method should be changed to if (slashIndex >= 0) so

that the first character cannot be a /.

3.1.3 GSO-003 — Read-Only Devices Compromise Forward Secrecy

Vulnerability ID: GSO-003

Vulnerability type: Loss of Forward Secrecy

Threat level: Elevated

Description:

Read-only devices never update their keys and thus forfeit forward security.

Technical description:

Read-only devices will forward their Signal chaining key, but messages are never sent from these devices so the Signal

root key will never be ratcheted forward. Such a device compromises the future secrecy of the entire conversation: if

the receiving chaining key of such a device is compromised, the rest of the conversation from that point onwards is

compromised.

Pentest Technical Summary 13

Impact:

If a chaining key is compromised, the confidentiality of all future messages is compromised.

Recommendation:

Read-only devices should send regular keyTransportElement messages.

3.1.4 GSO-004 — Signed Pre-Keys Should Be Updated When Used

Vulnerability ID: GSO-004

Vulnerability type: Loss of Forward Secrecy

Threat level: Elevated

Description:

Signed prekeys are not refreshed when used in a session initiation, allowing an active attacker to compromise the

forward secrecy of a PreKeySignalMessage.

Technical description:

From the previous protocol audit:

The lifetime of (signed) prekeys should be mentioned in the standard. Signed prekeys should be changed
regularly in order to achieve forward secrecy. This should at least be done after every time the user receives a
PreKeySignalMessage that uses the latest signed prekey, but it can be done more often (based on time) to ensure the
forward secrecy of dropped messages.

Although signed pre-keys are regularly updated, they are not rotated when someone uses one.

changeSignedPreKey -- regenerates changed prekeys every 7-14 days
called from
 rotateSignedPreKey
 regenerate
 publishBundle
 removeOldSignedPreKeys -- keeps the last n (configurable via MaxNumberOfStoredSignedPreKeys)
 old prekeys

Impact:

Forward secrecy can be forfeited, especially in combination when no one-time pre-key is sent along.

14 Radically Open Security B.V.

Confidential

Recommendation:

Rotate all used pre-keys upon usage.

3.1.5 GSO-005 — Unsafe parameters passed to file operation methods

Vulnerability ID: GSO-005

Vulnerability type: Unsafe Parameter Handling

Threat level: Moderate

Description:

In the FileBasedOmemoStore, the arguments passed to the methods responsible for creating files/directories and

reading/writing data to them are not sufficiently checked for malicious characters, leading to possible path traversal

attacks.

Technical description:

The methods affected include the following:

• writeBytes

• readBytes

• writeIntegers

• readIntegers

• writeInt

• readInt

• writeLong

• readLong

• all the methods of the fileHierarchy class

An example of this vulnerability can be found in OmemoManager.java -> deviceListUpdateListener -

> getOmemoStoreBackend().mergeCachedDeviceList() -> storeCachedDeviceList(). Another

BareJid contact parameter is used to get the file to write to, and the data to write is taken from status updates of active

devices in the deviceListUpdateListener.

Pentest Technical Summary 15

Impact:

This bug could potentially allow an attacker to write arbitrary data to arbitrary files, leading to serious security issues.

Potential further attacks could be implemented against the system combining other load and store operations, depending

on the exact implementation of the application.

Recommendation:

The functions used for reading and writing data to the omemo store should strip any special characters from parameters

used for creating the target path inside the methods themselves. This way, no assumptions are made about the safety of

the parameters and incorrect implementations or future changes cannot introduce similar security issues.

3.1.6 GSO-006 — Exhaustion of Pre-Keys Using MAM Messages.

Vulnerability ID: GSO-006

Vulnerability type: Resource Exhaustion

Threat level: Low

Description:

An attacker can exhaust all pre-keys using MAM stored messages, and prevent legitimate users from initiating a session

with the peer.

Technical description:

decryptMamQueryResult() does not take care of PreKeySignalMessage by retaining them until all MAM

messages are processed, also no attempt is made to initiate a fresh session back to the initiator.

Impact:

Legitimate users might be prevented from initializing a session with a victim.

Recommendation:

Retain all prekeys until all MAM messages are processed, and initiate a fresh session with the peer to avoid prekey

reuse.

16 Radically Open Security B.V.

Confidential

3.2 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

3.2.1 NF-001 — Search the code for dangerous java methods

The smack-omemo and smack-omemo-signal code was searched for potentially dangerous method calls that can lead to

security issues when passed user-controlled input. No such usage was found.

The following methods were included in this search:

• java.lang.ClassLoader.defineClass

• java.net.URLClassLoader

• java.beans.Instrospector.getBeanInfo

• java.io.File.delete

• java.io.File.renameTo

• java.io.File.listFiles

• java.io.File.list

• java.io.FileReader

• java.io.FileWriter

• java.io.RandomAccessFile

• System.setProperty

• System.getProperties

• System.getProperty

• System.load

• System.loadLibrary

• Runtime.exec

• ProcessBuilder (constructor)

• java.awt.Robot.keyPress/keyRelease

• java.awt.Robot.mouseMove/mousePress/mouseRelease

• java.lang.Class.getDeclaredMethod

• java.lang.Class.getDeclaredField

• java.lang.reflection.Method.invoke

• java.lang.reflection.Field.set

• java.lang.reflection.Field.get

• javax.script.ScriptEngine.eval

• Runtime.getRuntime().exec

• XMLdecoder

Pentest Technical Summary 17

• XStream

• fromXML

• ObjectInputSteam

• readObject

• readObjectNodData

• readResolve

• readExternal

• ObjectInputStream.readUnshared

3.2.2 NF-002 — Investigate serialization functionality of the CachedDeviceList
class

Due to time-constraints, this functionality was not thoroughly checked for security issues. When combined with the

potential problems in the file based omemo store read/write operations as described in the unsafe file operations (page

15) section, this could lead to dangerous scenarios in which user-controlled input is deserialized.

Nonetheless, if those file operations are properly secured this will likely not pose a security threat. Further retesting of

implemented security fixes will have to verify this, as described in the future work (page 20) section.

The following line contains code that could warrant further inspection:

• java/org/jivesoftware/smackx/omemo/internal/CachedDeviceList.java:35:

public class CachedDeviceList implements Serializable {

3.2.3 NF-003 — Investigate potential xml attacks against used parsers

Due to time-constraints and the complexity involved in verifying some of the other issues encountered, no time was

spent investigating the XML parsing components of the library for attacks such as external entity injection and denial of

service.

During a potential retest to verify any security fixes implemented, some time should be dedicated to investigating these

potential issues. See the future work (page 20) section.

The following files contain code that could warrant further inspection:

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/OmemoElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/

OmemoBundleElement.java

18 Radically Open Security B.V.

Confidential

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/

OmemoVAxolotlElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/

OmemoBundleVAxolotlElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/

OmemoDeviceListElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/

OmemoVAxolotlProvider.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/

OmemoBundleVAxolotlProvider.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/

OmemoDeviceListVAxolotlProvider.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/OmemoInitializer.java

Pentest Technical Summary 19

4 Future Work

• Retest of implemented security fixes

If deemed appropriate, a retest of security fixes implemented in response to the findings described in this

document can verify that all attack vectors have been closed off.

• Further investigation of Serialization

Further investigation of the serialization functionality as used in the Smack library could potentially uncover

additional security issues.

• Further investigation of XML parsing

Further investigation of the XML parsers used in the library could potentially uncover additional security issues.

• Address shortcomings of the Omemo protocol

The Omemo protocol could do with a review, but most importantly, cryptographic solutions should be explored for

securing sessions against infiltrations by adding surreptitious devices to peers who blindly accept new devices.

• Consider checking the security of key material

Investigate how the compromise of a device affects the confidentiality of session keys.

20 Radically Open Security B.V.

Confidential

5 Conclusion

The cryptographic issues found are mostly related to the quality of the Omemo protocol specification and not the

concrete implementation. Some things can be fixed at the implementation level, but we suggest updating the Omemo

specification to help implementers avoid common pitfalls.

The issue relating to unsafe file operations could in certain specific cases be used to compromise parts of the system

running the library code. This can be trivially fixed by adding effective validations, as suggested in the recommendations.

Conclusion 21

Appendix 1 Testing team

Stefan Marsiske Stefan runs workshops on radare2, embedded hardware, lock-picking, soldering,
gnuradio/SDR, reverse-engineering, and crypto topics. In 2015 he scored in the top 10
of the Conference on Cryptographic Hardware and Embedded Systems Challenge. He
has run training courses on OPSEC for journalists and NGOs.

Daan Spitz Daan is a security researcher and developer who believes in offensive security. He
has a special interest in the fields of reverse engineering, system emulation/fuzzing,
vulnerability discovery and exploit development and has several years of experience
in performing infrastructure and application-level security audits. He occasionally plays
CTF with the Eindbazen team, which he enjoys a lot, and has been helping to organize
and build the CTF event for the Hack in the Box security conference in Amsterdam
since 2016.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

22 Radically Open Security B.V.

