
Confidential

PENETRATION TEST REPORT

for

The Guardian Project

V 0.2
Amsterdam
September 10th, 2018

1/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Document Properties

Client The Guardian Project

Title PENETRATION TEST REPORT

Targets Smack-omemo/src/main
Smack-omemo-signal/src/main

Version 0.2

Pentesters Stefan Marsiske, Daan Spitz

Authors Stefan Marsiske, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 August 29th, 2018 Stefan Marsiske Initial draft

0.2 September 10th, 2018 Marcus Bointon Review

Contact
For more information about this Document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

2/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Table of Contents
1 Executive Summary ... 4
1.1 Introduction .. 4
1.2 Scope of work ... 4
1.3 Project objectives .. 4
1.4 Timeline ... 4
1.5 Results In A Nutshell .. 4
1.6 Summary of Findings .. 5
1.6.1 Findings by Threat Level ... 6
1.6.2 Findings by Type .. 6
1.7 Summary of Recommendations .. 6
2 Methodology ... 8
2.1 Planning .. 8
2.2 Risk Classification ... 8
3 Pentest Technical Summary .. 9
3.1 Findings ... 9
3.1.1 GSO-001 — Inactive Devices Compromise Forward Secrecy .. 9
3.1.2 GSO-002 — Invalid BareJid validation leads to unauthorized file access ... 10
3.1.3 GSO-003 — Read-Only Devices Compromise Forward Secrecy ... 12
3.1.4 GSO-004 — Signed Pre-Keys Should Be Updated When Used ... 13
3.1.5 GSO-005 — Unsafe parameters passed to file operation methods .. 13
3.1.6 GSO-006 — Exhaustion of Pre-Keys Using MAM Messages. .. 15
3.2 Non-Findings ... 15
3.2.1 NF-001 — Search the code for dangerous java methods ... 15
3.2.2 NF-002 — Investigate serialization functionality of the CachedDeviceList class 17
3.2.3 NF-003 — Investigate potential xml attacks against used parsers .. 17
4 Future Work ... 19
5 Conclusion .. 20
Appendix 1 Testing team ... 21

3/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

1 Executive Summary

1.1 Introduction

Between August 5, 2018 and TBD, Radically Open Security B.V. carried out a code audit for The Guardian
Project

This report contains our findings as well as detailed explanations of exactly how ROS performed the
penetration test.

1.2 Scope of work

The scope of the code audit was limited to the following targets:

• Smack-omemo/src/main
• Smack-omemo-signal/src/main

tagged in git with v4.3

1.3 Project objectives

The goal of the audit was to verify the correctness of the Omemo implementation and to check for any
traditional vulnerabilities in the code.

1.4 Timeline

The Security Audit took place between August 5, 2018 and TBD.

1.5 Results In A Nutshell

Three cases of compromise of forward security and one denial of service using resource exhaustion of
prekeys has been found. The compromise of forward security is an especially serious matter as it reduces the
security guarantees of the protocol significantly.

4/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Furthermore, an issue was discovered in the validation of user-supplied usernames, possibly leading to
unsafe file operations performed by the default file-backed omemo store. This could possibly lead to system
compromise via arbitrary file reading and writing, depending on how the library is used in an application.

1.6 Summary of Findings

ID Type Description Threat level

GSO-001 Loss of Forward Secrecy Inactive devices which no longer come online retain old
chaining keys, which, if compromised, break confidentiality of all
messages from that key onwards.

High

GSO-002 Unsafe Parameter
Handling

Inappropriate validation of user-supplied username and
password inputs in the smack-omemo component may pass
through characters that are unsafe to use in file operations
performed by the default file-backed omemo store.

Elevated

GSO-003 Loss of Forward Secrecy Read-only devices never update their keys and thus forfeit
forward security.

Elevated

GSO-004 Loss of Forward Secrecy Signed prekeys are not refreshed when used in a session
initiation, allowing an active attacker to compromise the forward
secrecy of a PreKeySignalMessage.

Elevated

GSO-005 Unsafe Parameter
Handling

In the FileBasedOmemoStore, the arguments passed to the
methods responsible for creating files/directories and reading/
writing data to them are not sufficiently checked for malicious
characters, leading to possible path traversal attacks.

Moderate

GSO-006 Resource Exhaustion An attacker can exhaust all pre-keys using MAM stored
messages, and prevent legitimate users from initiating a session
with the peer.

Low

5/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

1.6.1 Findings by Threat Level

16.7%

50.0%

16.7%
High (1)

Elevated (3)

Moderate (1)

Low (1)

1.6.2 Findings by Type

16.7%

33.3%

Loss of forward secrecy (3)

Unsafe parameter handling (2)

Resource exhaustion (1)

1.7 Summary of Recommendations

ID Type Recommendation

GSO-001 Loss of Forward Secrecy Deactivate inactive devices after a certain amount of time. Allow inactive devices to
reactivate only after a keyTransportElement ensures fresh keys.

GSO-002 Unsafe Parameter
Handling

The functions used for reading and writing data to the omemo store should strip
any special characters from parameters used for creating the target path inside the
methods themselves.

6/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

GSO-003 Loss of Forward Secrecy Read-only devices should send regular keyTransportElement messages.

GSO-004 Loss of Forward Secrecy Rotate all used pre-keys upon usage.

GSO-005 Unsafe Parameter
Handling

The functions used for reading and writing data to the omemo store should strip
any special characters from parameters used for creating the target path inside the
methods themselves.

GSO-006 Resource Exhaustion Retain all prekeys until all MAM messages are processed, and initiate a fresh session
with the peer to avoid prekey reuse.

7/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

2 Methodology

2.1 Planning

Our general approach during this code audit was as follows:

1. Code reading
The code has been inspected with rigorous attention to the implementation of the Omemo
protocol, with special regard to our previous review of the Omemo protocol and its implementation
in the 3rd party Conversations application.

2. Code searching
The code was scanned for problematic use of classes and methods that are known to be potential
causes of security issues. This includes methods that perform system commands, file or network
operations, deserialization, class loading, sql queries and html outputting. Any such functionality
was manually reviewed for problematic usage.

2.2 Risk Classification

Throughout the document, vulnerabilities or risks are labeled and categorized as:

• Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financial/
reputational losses occurring as a result.

• High
High risk of security controls being compromised with the potential for significant financial/
reputational losses occurring as a result.

• Elevated
Elevated risk of security controls being compromised with the potential for material financial/
reputational losses occurring as a result.

• Moderate
Moderate risk of security controls being compromised with the potential for limited financial/
reputational losses occurring as a result.

• Low
Low risk of security controls being compromised with measurable negative impacts as a result.

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES).
For more information, see: http://www.pentest-standard.org/index.php/Reporting.

8/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

3 Pentest Technical Summary

3.1 Findings

We have identified the following issues:

3.1.1 GSO-001 — Inactive Devices Compromise Forward Secrecy

Vulnerability ID: GSO-001

Vulnerability type: Loss of Forward Secrecy

Threat level: High

Description:
Inactive devices which no longer come online retain old chaining keys, which, if compromised, break
confidentiality of all messages from that key onwards.

Technical description:
Inactive devices that are no longer used and no longer come online should be pruned from the conversation.
They keep a copy of an old chain key in their memory, which compromises the forward secrecy of the entire
conversation.

Stale (inactive) devices are taken care of by "stale device" handling, however
processSendingMessage() only disables our own devices, not the devices of others.

Impact:
Forward secrecy is forfeited. All messages derived from the old key can be decrypted if an inactive (and
presumably old) device key is compromised.

Recommendation:
Deactivate inactive devices after a certain amount of time. Allow inactive devices to reactivate only after a
keyTransportElement ensures fresh keys.

9/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

3.1.2 GSO-002 — Invalid BareJid validation leads to unauthorized file access

Vulnerability ID: GSO-002

Vulnerability type: Unsafe Parameter Handling

Threat level: Elevated

Description:
Inappropriate validation of user-supplied username and password inputs in the smack-omemo component
may pass through characters that are unsafe to use in file operations performed by the default file-backed
omemo store.

Technical description:
The following snippet smack-omemo/src/main/java/org/jivesoftware/smackx/omemo/
OmemoManager.java:180 contains code that is exploitable:

public static synchronized OmemoManager getInstanceFor(XMPPConnection connection) {
 BareJid user;
 if (connection.getUser() != null) {
 user = connection.getUser().asBareJid();
 } else {
 // This might be dangerous
 try {
 user = JidCreate.bareFrom(((AbstractXMPPConnection)
 connection).getConfiguration().getUsername());
 } catch (XmppStringprepException e) {
 throw new AssertionError("Username is not a valid Jid. " +
 "Use OmemoManager.gerInstanceFor(Connection, deviceId) instead.");
 }
 }

If the XMPPConnection object is not yet authenticated and therefore does not contain a
username, the username will be taken from the configuration. The line creating the jid object
using JidCreate.bareFrom passes the username from the connection configuration. This
can be any CharSequence coming from the outside client code utilizing the library (set by calling
ConnectionConfiguration.setUsernameAndPassword).

Following the logic in the bareFrom method in the jxmpp module to the parseLocalpart method, we
can see that if the username contains a / character before a @ character, the jid will be seen as having only a
domain part and will be instantiated as a DomainPartJid object.

The code that parses this domain part contains the actual bug:

public static String parseDomain(String jid) {
 if (jid == null) return null;

 int atIndex = jid.indexOf('@');
 int slashIndex = jid.indexOf('/');
 if (slashIndex > 0) {
 // 'local@domain.foo/resource' and 'local@domain.foo/res@otherres' case
 if (slashIndex > atIndex) {
 return jid.substring(atIndex + 1, slashIndex);
 // 'domain.foo/res@otherres' case

10/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

 } else {
 return jid.substring(0, slashIndex);
 }
 } else {
 return jid.substring(atIndex + 1);
 }
}

The slashIndex > 0 check is supposed to check if there are any slashes in the username, but it skips
the first character at index 0, which can therefore still contain a / character undetected. The code in the else
branch then returns the part after the first @ character. This means that if the first two characters are /@, any
following characters will be returned and accepted into the domain part of the DomainpartJid.

So if the username is /@../../../../../../../etc/passwd, ../../../../../../../etc/
passwd will be stored as the jid. This jid is later used unchanged as part of the path for retrieving the right
defaultDeviceId from the file-backed omemo store.

To demonstrate files being written outside of the omemo store root, the following PoC code was created and
tested:

OmemoConfiguration.setFileBasedOmemoStoreDefaultPath(new File("/tmp/store"));
Builder<?, ?> builder = DummyConnectionNotAuthed.getDummyConfigurationBuilder();
builder.setUsernameAndPassword("/@../../../../../../../../../../../../tmp/h4x", "");
DummyConnectionNotAuthed connection = new DummyConnectionNotAuthed(builder.build());

OmemoManager a = OmemoManager.getInstanceFor(connection);

After running this PoC as a unit test, the following files can be observed outside of the omemo store root (/
tmp/store):

[user@pentest]$ ls -l /tmp/h4x
total 4
-rw-rw-r-- 1 user user 4 Aug 9 07:49 defaultDeviceId

The following screenshots show a debugging session annotating the local variables that are being passed
forward to the file operation methods:

Impact:
This bug could lead to different attack vectors depending on how exactly the library is integrated into an
application. In any case, the result is that arbitrary folders can be created outside of the omemo store root, and

11/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

files can be written to those directories. Further potential attacks could be implemented against the system
combining other load and store operations.

Recommendation:
The functions used for reading and writing data to the omemo store should strip any special characters from
parameters used for creating the target path inside the methods themselves. This way no assumptions are
made about the safety of the parameters and incorrect implementations or future changes cannot introduce
similar security issues.

if (slashIndex > 0) { inside the parseDomain method should be changed to if (slashIndex
>= 0) so that the first character cannot be a /.

3.1.3 GSO-003 — Read-Only Devices Compromise Forward Secrecy

Vulnerability ID: GSO-003

Vulnerability type: Loss of Forward Secrecy

Threat level: Elevated

Description:
Read-only devices never update their keys and thus forfeit forward security.

Technical description:
Read-only devices will forward their Signal chaining key, but messages are never sent from these devices
so the Signal root key will never be ratcheted forward. Such a device compromises the future secrecy of the
entire conversation: if the receiving chaining key of such a device is compromised, the rest of the conversation
from that point onwards is compromised.

Impact:
If a chaining key is compromised, the confidentiality of all future messages is compromised.

Recommendation:
Read-only devices should send regular keyTransportElement messages.

12/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

3.1.4 GSO-004 — Signed Pre-Keys Should Be Updated When Used

Vulnerability ID: GSO-004

Vulnerability type: Loss of Forward Secrecy

Threat level: Elevated

Description:
Signed prekeys are not refreshed when used in a session initiation, allowing an active attacker to compromise
the forward secrecy of a PreKeySignalMessage.

Technical description:
From the previous protocol audit:

The lifetime of (signed) prekeys should be mentioned in the standard. Signed prekeys should be changed
regularly in order to achieve forward secrecy. This should at least be done after every time the user receives
a PreKeySignalMessage that uses the latest signed prekey, but it can be done more often (based on time) to
ensure the forward secrecy of dropped messages.
Although signed pre-keys are regularly updated, they are not rotated when someone uses one.

changeSignedPreKey -- regenerates changed prekeys every 7-14 days
called from
 rotateSignedPreKey
 regenerate
 publishBundle
 removeOldSignedPreKeys -- keeps the last n (configurable via MaxNumberOfStoredSignedPreKeys)
 old prekeys

Impact:
Forward secrecy can be forfeited, especially in combination when no one-time pre-key is sent along.

Recommendation:
Rotate all used pre-keys upon usage.

3.1.5 GSO-005 — Unsafe parameters passed to file operation methods

Vulnerability ID: GSO-005

Vulnerability type: Unsafe Parameter Handling

13/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Threat level: Moderate

Description:
In the FileBasedOmemoStore, the arguments passed to the methods responsible for creating files/
directories and reading/writing data to them are not sufficiently checked for malicious characters, leading to
possible path traversal attacks.

Technical description:
The methods affected include the following:

• writeBytes

• readBytes

• writeIntegers

• readIntegers

• writeInt

• readInt

• writeLong

• readLong

• all the methods of the fileHierarchy class

An example of this vulnerability can be found in OmemoManager.java ->
deviceListUpdateListener -> getOmemoStoreBackend().mergeCachedDeviceList()
-> storeCachedDeviceList(). Another BareJid contact parameter is used to get the file to write to,
and the data to write is taken from status updates of active devices in the deviceListUpdateListener.

Impact:
This bug could potentially allow an attacker to write arbitrary data to arbitrary files, leading to serious security
issues. Potential further attacks could be implemented against the system combining other load and store
operations, depending on the exact implementation of the application.

Recommendation:
The functions used for reading and writing data to the omemo store should strip any special characters from
parameters used for creating the target path inside the methods themselves. This way, no assumptions are
made about the safety of the parameters and incorrect implementations or future changes cannot introduce
similar security issues.

14/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

3.1.6 GSO-006 — Exhaustion of Pre-Keys Using MAM Messages.

Vulnerability ID: GSO-006

Vulnerability type: Resource Exhaustion

Threat level: Low

Description:
An attacker can exhaust all pre-keys using MAM stored messages, and prevent legitimate users from initiating
a session with the peer.

Technical description:
decryptMamQueryResult() does not take care of PreKeySignalMessage by retaining them until
all MAM messages are processed, also no attempt is made to initiate a fresh session back to the initiator.

Impact:
Legitimate users might be prevented from initializing a session with a victim.

Recommendation:
Retain all prekeys until all MAM messages are processed, and initiate a fresh session with the peer to avoid
prekey reuse.

3.2 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

3.2.1 NF-001 — Search the code for dangerous java methods

The smack-omemo and smack-omemo-signal code was searched for potentially dangerous method calls that
can lead to security issues when passed user-controlled input. No such usage was found.

The following methods were included in this search:

• java.lang.ClassLoader.defineClass

• java.net.URLClassLoader

• java.beans.Instrospector.getBeanInfo

15/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

• java.io.File.delete

• java.io.File.renameTo

• java.io.File.listFiles

• java.io.File.list

• java.io.FileReader

• java.io.FileWriter

• java.io.RandomAccessFile

• System.setProperty

• System.getProperties

• System.getProperty

• System.load

• System.loadLibrary

• Runtime.exec

• ProcessBuilder (constructor)

• java.awt.Robot.keyPress/keyRelease

• java.awt.Robot.mouseMove/mousePress/mouseRelease

• java.lang.Class.getDeclaredMethod

• java.lang.Class.getDeclaredField

• java.lang.reflection.Method.invoke

• java.lang.reflection.Field.set

• java.lang.reflection.Field.get

• javax.script.ScriptEngine.eval

• Runtime.getRuntime().exec

• XMLdecoder

• XStream

• fromXML

• ObjectInputSteam

• readObject

• readObjectNodData

• readResolve

• readExternal

• ObjectInputStream.readUnshared

16/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

3.2.2 NF-002 — Investigate serialization functionality of the CachedDeviceList class

Due to time-constraints, this functionality was not thoroughly checked for security issues. When combined
with the potential problems in the file based omemo store read/write operations as described in the unsafe
file operations (page 13) section, this could lead to dangerous scenarios in which user-controlled input is
deserialized.

Nonetheless, if those file operations are properly secured this will likely not pose a security threat. Further
retesting of implemented security fixes will have to verify this, as described in the future work (page 19)
section.

The following line contains code that could warrant further inspection:

• java/org/jivesoftware/smackx/omemo/internal/
CachedDeviceList.java:35:
public class CachedDeviceList implements Serializable {

3.2.3 NF-003 — Investigate potential xml attacks against used parsers

Due to time-constraints and the complexity involved in verifying some of the other issues encountered, no time
was spent investigating the XML parsing components of the library for attacks such as external entity injection
and denial of service.

During a potential retest to verify any security fixes implemented, some time should be dedicated to
investigating these potential issues. See the future work (page 19) section.

The following files contain code that could warrant further inspection:

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/
OmemoElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/
OmemoBundleElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/
OmemoVAxolotlElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/
OmemoBundleVAxolotlElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/element/
OmemoDeviceListElement.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/
OmemoVAxolotlProvider.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/
OmemoBundleVAxolotlProvider.java

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/provider/
OmemoDeviceListVAxolotlProvider.java

17/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

• smack-omemo-main/java/org/jivesoftware/smackx/omemo/
OmemoInitializer.java

18/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

4 Future Work

• Retest of implemented security fixes
If deemed appropriate, a retest of security fixes implemented in response to the findings described
in this document can verify that all attack vectors have been closed off.

• Further investigation of Serialization
Further investigation of the serialization functionality as used in the Smack library could potentially
uncover additional security issues.

• Further investigation of XML parsing
Further investigation of the XML parsers used in the library could potentially uncover additional
security issues.

• Address shortcomings of the Omemo protocol
The Omemo protocol could do with a review, but most importantly, cryptographic solutions should
be explored for securing sessions against infiltrations by adding surreptitious devices to peers who
blindly accept new devices.

• Consider checking the security of key material
Investigate how the compromise of a device affects the confidentiality of session keys.

19/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

5 Conclusion

The cryptographic issues found are mostly related to the quality of the Omemo protocol specification and not
the concrete implementation. Some things can be fixed at the implementation level, but we suggest updating
the Omemo specification to help implementers avoid common pitfalls.

The issue relating to unsafe file operations could in certain specific cases be used to compromise parts of the
system running the library code. This can be trivially fixed by adding effective validations, as suggested in the
recommendations.

20/21 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Appendix 1 Testing team

Stefan Marsiske Stefan runs workshops on radare2, embedded hardware, lock-picking, soldering,
gnuradio/SDR, reverse-engineering, and crypto topics. In 2015 he scored in the
top 10 of the Conference on Cryptographic Hardware and Embedded Systems
Challenge. He has run training courses on OPSEC for journalists and NGOs.

Daan Spitz Daan is a security researcher and developer who believes in offensive security.
He has a special interest in the fields of reverse engineering, system emulation/
fuzzing, vulnerability discovery and exploit development and has several years of
experience in performing infrastructure and application-level security audits.
He occasionally plays CTF with the Eindbazen team, which he enjoys a lot, and
has been helping to organize and build the CTF event for the Hack in the Box
security conference in Amsterdam since 2016.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is
also the co-founder/CEO of Radically Open Security.

21/21 Radically Open Security B.V. - Chamber of Commerce 60628081

